Sea T un triángulo de lados a, b, c y sean P su perímetro y A su área.
Demostrar que: \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{\sqrt{3}P}{A}.
¿Cuándo se cumple la igualdad?
Sea T un triángulo de lados a, b, c y sean P su perímetro y A su área.
Demostrar que: \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{\sqrt{3}P}{A}.
¿Cuándo se cumple la igualdad?
La verdad es que desde hace mas de 10 años que la Asociación Fibonacci de Matemática y Física ha querido mantener este sitio como una manera de aportar a la preparación de los y las jóvenes estudiantes que participan en las Olimpíadas de Matemática, especialmente el Torneo El Número de Oro.
Falta poco para la habilitación del Foro, que viene renovado y muy atractivo. Mientras, iremos publicando algunos desafíos de los que esperamos sus soluciones vía correo. Las mejores soluciones las publicaremos con el nombre de su autor.
Manos a la obra:
En el \triangle ABC se inscribe el \triangle DEF de modo que D está en AB, E está en BC y F está en CA, tales que:
\frac{AD}{DB} = \frac{BE}{EC} = \frac{CF}{FA} = \frac{1}{2}Si Á(\triangle ABC) = 27 cm^2, cuánto mide Á(\triangle DEF)?
Un desafío más. En el Nivel Menor, sumas súper conocidas y en el Nivel Mayor, uno sencillo de Geometría.
Uno de poesía muy entretenido en el Nivel Mayor
y
Uno más entretenido de Geometría en el Nivel Menor.
A postear sus soluciones.